This comes directly from Ptolemy's Theorem as well:EO * CD = CE * DO + DE * CO orEO = (CE * DO + DE * CO ) / CDCD = sqrt(a^2 + b^2)CO = DO = CD * sqrt(2) / 2So EO = (b * CD * sqrt(2) / 2 + a * CD * sqrt(2) / 2) / CD = (a + b) * (CD * sqrt(2) / 2 ) / CD = (a + b) * sqrt(2) / 2
I left off ECOD is a cyclic quad due to the two opposing right angles E and O.
Post a Comment
2 comments:
This comes directly from Ptolemy's Theorem as well:
EO * CD = CE * DO + DE * CO or
EO = (CE * DO + DE * CO ) / CD
CD = sqrt(a^2 + b^2)
CO = DO = CD * sqrt(2) / 2
So EO = (b * CD * sqrt(2) / 2 + a * CD * sqrt(2) / 2) / CD
= (a + b) * (CD * sqrt(2) / 2 ) / CD
= (a + b) * sqrt(2) / 2
I left off ECOD is a cyclic quad due to the two opposing right angles E and O.
Post a Comment